Korzystając ze strony wyrażasz zgodę na używanie cookie, zgodnie z aktualnymi ustawieniami przeglądarki. OK

D. Galar
Context-driven Maintenance: an eMaintenance approach
DOI 10.12914/MSPE-05-03-2014
Streszczenie:
Wszystkie środki techniczne w trakcie użytkowanie podlegają procesom zużycia i starzenia. Metody i narzędzia prognostyczne pozwala na ocenę bieżącego stanu systemu i przewiduje pozostały czas życia, w oparciu o identyfikację stopniowego pogarszania jego możliwości operacyjnych. Prognozowanie jest niezbędne do poprawy bezpieczeństwa, skutecznego planowania i harmonogramowania prac obsługowo-naprawczych oraz obniżenia kosztów konserwacji i przestojów. Prognozowanie jest stosunkowo nowym obszarem, ale stało się ważnym elementem strategii eksploatacji według stanu technicznego (ang. Condition Based Maintenance). Ponieważ istnieje wiele technik prognozowania, ich wykorzystanie musi być dopasowane do poszczególnych zastosowań.  Ogólnie mówiąc, metody prognostyczne oparte są albo na analizie danych, albo na regułach albo na modelach. Każde podejście posiada swoje wady i zalety; z tego też względu są one często łączone w ramach zastosowań hybrydowych. Model hybrydowy może łączyć kilka lub wszystkie typy modeli; w ten sposób, można pozyskać pełniejszą informację, prowadząc do bardziej dokładnego rozpoznania zdarzenia. To podejście jest szczególnie istotne w systemach, w których operator i serwisant posiadają wiedzę na temat mechanizmów powstawania wybranych uszkodzeń, ale sama złożoność obiektów technicznych wyklucza opracowanie podejścia zorientowanego modelowo. Artykuł lokuje proces agregacji danych w obszar kontekstowej świadomości modeli hybrydowych, w celu uzyskania wartości przydatności resztkowej RUL (ang. RUL-Remaining Useful Life) w obrębie logicznych przedziałów ufności, tak aby cykl życia obiektów mógł być zarządzany i optymalizowany.
Słowa kluczowe: kontekst, szeregi czasowe, modele hybrydowe, symboliczny, dane, predykcja, CMMS, fuzja
Czytaj artykuł »

   
© wydawnictwo.panova.pl